PermeapadTM

A new biomimetic tool for drug permeability studies

Hanady A. Bibi, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; Massimiliano di Cagno, University of Tromsø - the Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway; Annette Bauer-Brandl, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.

Introduction

Permeability properties of new chemical entities are decisive in drug development. However none of the currently available permeability assays (e.g. Caco-2 cells and PAMPA) are able to match the requirements of R&D in industry in terms of high throughput, robustness and ease of use.

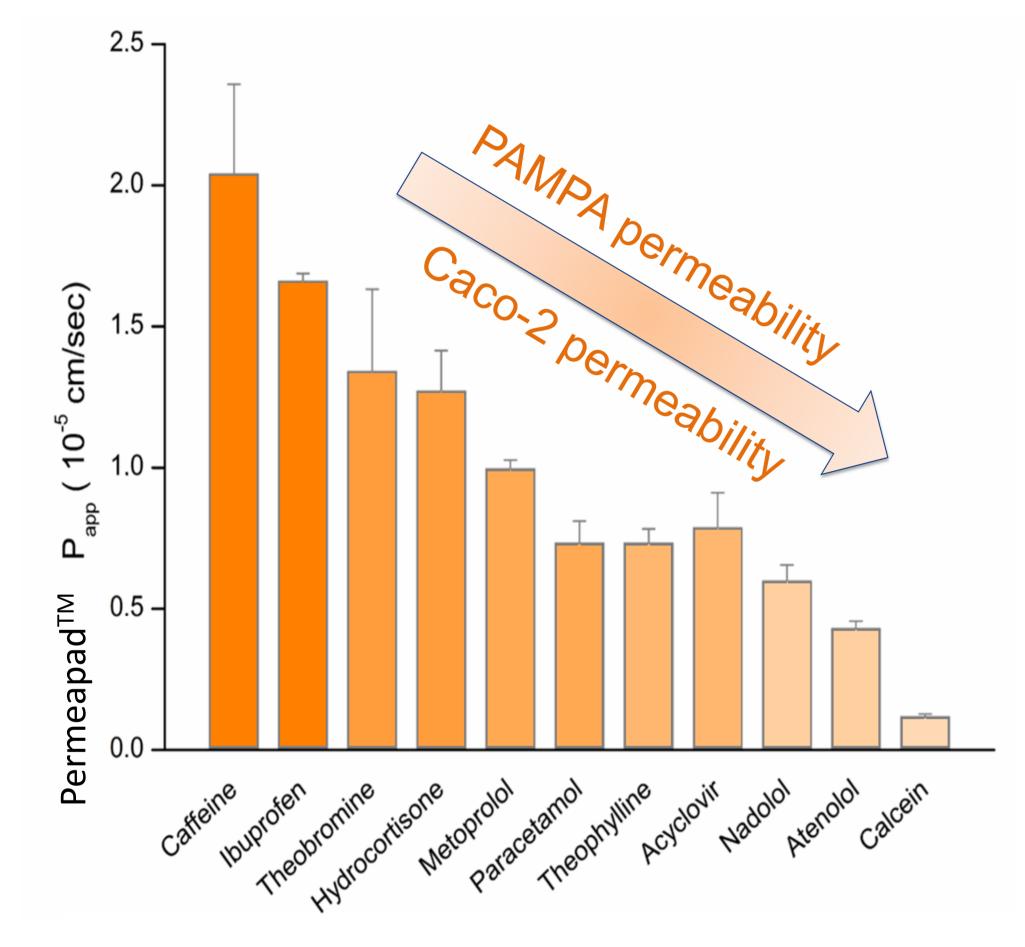
Aim

- The aim of this work was to validate Permeapad[™] in passive permeability studies using Franz diffusion cells.
- The functional stability of the barrier against pH changes and the presence of excipients, e.g. surfactants has also been investigated [2,3].

Conclusion

- Permeapad[™] barriers can be used to predict the passive permeability of a range of compounds.
- The Permeapad[™] barrier proved to maintain its functionality over time, in different pH environments and in the presence of solvents and surfactants.
- Furthermore comparison with the literature indicated a good correlation between the P_{app} measured with Caco-2 cell and PAMPA assays in relation to Permeapad[™].

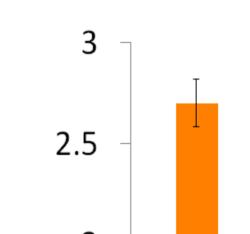
A novel biomimetic permeation barrier "Permeapad[™]" has been developed and permeability of drugs studied.



Permeapad[™] is a promising tool for fast, cost effective, and reliable screening of passive permeability of drugs and chemical entities

Results

Fig. 1, Franz cell diffusion chambers


The apparent permeability coefficients of each drug was measured through PermeapadTM. Results showed good correlation to reference values for Caco-2 and PAMPA [2].

The compatibility of Permeapad[™] with solvents and surfactants was tested using calcein, a hydrophilic marker. The results show good compatibility enabling Permeapad[™] to be used with formulations. [3]

		Permeability (Papp)
	Concentration	
	(%)	(10 ⁻⁵ cm/s)
Barrier support	-	1.65 (0.10)

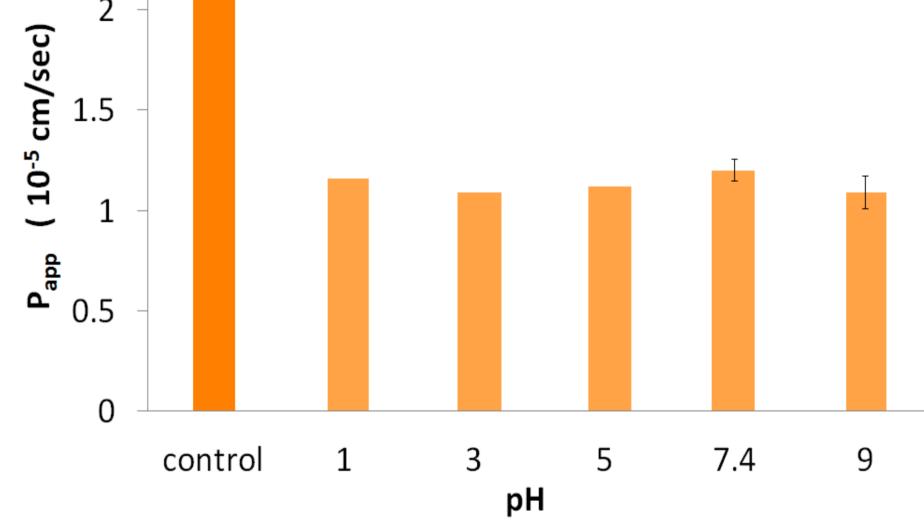

The functional stability of the barrier at different pH values was investigated using the pH independent drug Hydrocortisone. Results showed no change in permeability at pH values between 1 and 9 indicating that the integrity of Permeapad[™] is still maintained. [2]

Fig. 2, Apparent permeability coefficients (P_{app}) measured through PermeapadTM barrier. Results are reported as mean value \pm SD (n=3).

PBS - 0.1	2 (0.01)
Triton-X 1 0.1	12
Ethanol 4 0.1	12
Tween 60 4 0.1 Tween 80 5 0.0 Cremophor ® 5 0.1	15
Tween 80 5 0.0	06
Ethanol 4 0.1 Star Tween 60 4 0.1 Tween 60 4 0.1 Tween 80 5 0.0 Cremophor ® 5 0.1 SDS 5 0.1	12 (0.01)
SDS 5 0.2	21
DMSO 10 0.1	15

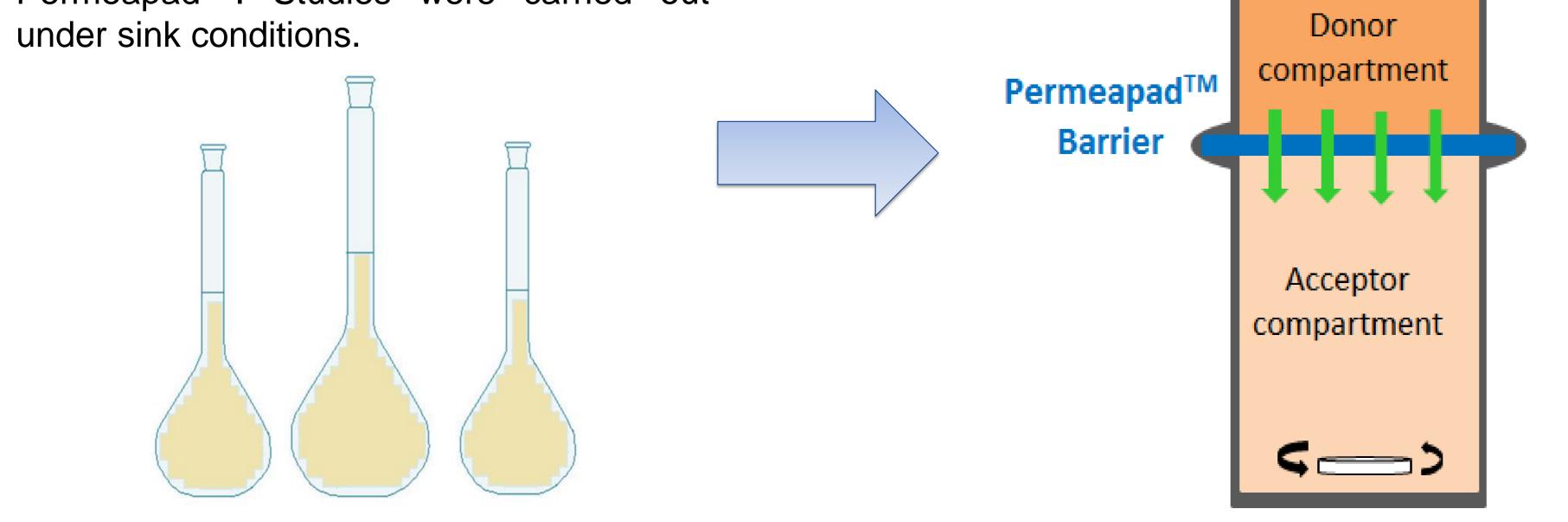
Table 1, Permeability for calcein in PBS through barrier support and PermeapadTM respectively in the presence of surfactants and solvents in the donor medium; (mean \pm std.dev., n=3-6) or as single values.

Fig. 3, Permeability of hydrocortisone (HC) measured employing PermeapadTM barriers at different pH. Control is represented by the permeability of HC measured through support layer. Results are reported as mean \pm SD (n=3) or as single values.

Method

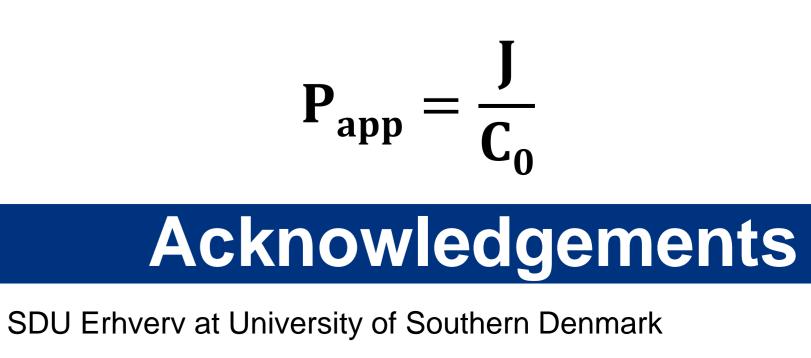
10 different drugs of different permeation properties and log P values, and calcein, a hydrophilic marker were tested on PermeapadTM. Studies were carried out

Franz cell diffusion system


Samples were withdrawn every 30 minutes for 5 hours and the flux (J) was calculated:

l dQ

The apparent permeability coefficient (P_{app})


was calculated by normalizing the flux (J)

measured by the concentration of the drug in

References

[1] di Cagno, M., Bauer-Brandl, A., Danish Patent Office, Filed November 2014;
[2] di Cagno, M., Bibi, H.A., Bauer-Brandl, A., 2015. Eur. J. Pharm. Sci. 73, 29-34
[3] Bibi, H.A., di Cagno, M., Holm, R., Bauer-Brandl, A., 2015 Int. J. Pharm. Sci. 493, 192–197

the donor compartment (C_0):

VINIVERSITY OF SOUTHERN **DENMARK.DK**